Probing the sea contribution to the proton's spin

Richard Hollis
University of California, Riverside
For the PHENIX Collaboration

Outline

- Physics Motivation
- Forward W A analysis detector upgrade
- Analysis challenges
- Results

Proton spin

- The proton's spin is not simply a summation of quark spin states within the nucleon
 - First measured 20 years ago
 - 'Spin crisis'
- 20+ years of investigation through (SI)DIS
 - Brought us a broader understanding...

Spin = $\frac{1}{2}$ u+u+d+++ = $\frac{1}{2}$?

Sea quark contribution

- One missing piece sea polarization
 - Quark polarized PDFs well constrained in fit to world data
 - Sea-quark → only roughly known

- Errors represent fit uncertainty
 - lack of data and
 - model uncertainties in fragmentation functions

W as a unique probe

- W's provide a clean probe of the sea
 - Maximally parity violating
 - Measure decay leptons
- W+: probes d-bar contribution
- W—: probes u-bar contribution

RHIC Spin

- Polarized protons from 200-500 GeV
- Longitudinal and transverse running
- . Two systematic advantages:
 - Siberian snakes: reduce depolarizing resonances
 - Alternating spin pattern (reduces uncertainty in relative luminosity due to positive/negative helicity)

Central-arm measurements (Run 9 data)

- First measurements of W cross-section and single spin asymmetries at RHIC
 - From both PHENIX and STAR

 Jacobian peak clearly visible at large momenta

Results and Forward expectations

$$\epsilon_L = \frac{N^+ - R \cdot N^-}{N^+ + R \cdot N^-}$$
 \longrightarrow $A_L = \frac{\epsilon_L \cdot D}{P}$ Measured Asymmetry Corrected Asymmetry

- First measurement of electron single spin asymmetries at central rapidities (Run9)
 - W[±] and Z⁰ indistinguishable
- More data available from Run11 and Run12
- Larger asymmetries expected at higher rapidity

Forward Analysis Plan

- Measure forward muons
 - Large asymmetry expected
 - PHENIX already has a forward muon detector

- Caveats
 - Muon arms proven only at low momentum
 - Large low-momentum muon cross-section from background sources
 - Need to trigger on high-momentum tracks

Before upgrade

- Trigger on MuID only
 - All p>2GeV/c survive
 - Dominated by low-p_T
 muon track candidates

 Solution: add the capability to select only highmomentum tracks

Inclusive \(\mu \) Production, 500 GeV/c

Upgrade (2009-2012)

- Front-End Electronics Upgrade to muon tracker
 - Trigger minimum momentum
- Additional Resistive Plate Chambers
 - Time measurement relative to crossing
 - Spatial measurement in η and φ
- For both muon arms, only North arm is shown
- Construction competed with ongoing commissioning in Run12

After upgrade

- Trigger on straight-line tracks through the whole muon arm
 - Excludes lowmomentum muons

- SG1 → allows a bend in the muon tracker of 1 strip
 - Leads to a momentum cut of about 10-15GeV/c

Background rejection

- RPC's allow one to reject some backgrounds
 - Matched tracks at fixed time
 - Backgrounds from DX magnets and incoming beam bunch are separable.
- Narrow time window in trigger further improves on trigger rejection

12th April

Background rejection

- RPC's allow one to reject some backgrounds
 - Matched tracks at fixed time
 - Backgrounds from DX magnets and incoming beam bunch are separable.

14

Understanding Backgrounds

- Background and Signal spectral shapes are not dissimilar
 - No Jacobian peak to help distinguish signal from background level

- Dominating fake background from low-p_T hadrons
- Momentum smearing in muon arms

Track Quality Cuts

 Main defense against fake background

- Low-momentum hadrons typically have a different residual distribution
 - Cut to retain 90% (tightest cut) to 99% (loosest) muons

Track Quality Cuts

Track Quality Cuts

- Rely mostly on simulations to provide cut positions
 - Checked with real muons from J/ψ decays (low-p)
 - Checked with cosmic muons (high-p)

Simulations and Cosmic-Rays

μ Cross-section

- Data and expected simulated µ cross-section
 - W→µ signal
 - Irreducible background
 - Fake background
- Data are reduced by ~2-3 orders of magnitude
 - Good agreement with simulation
- Residual signal to background ~1:3 (p_T>15GeV/c)
 - Starts at 1:>300 (p_{τ} >15GeV/c)

Signal-to-Background

- Need to estimate signal-tobackground for the dilution factor
- Two methods
 - Simulation only
 - Simulation (signal) and data (signal+background)
- · Zero checks:
 - Asymmetry vanishes for loosest cuts (more background)
 - Asymmetry vanishes for lower momentum (more background)

μ Asymmetries

- Forward muon single spin asymmetries
 - √s=500 GeV
 - P~50%
 - L~25pb⁻¹ per arm
- Compared to RHICBOS

 Statistics limited, but currently taking more 510GeV collisions

Highlights

- First results from PHENIX's forward W program
 - More results to come from the on going 510GeV run
- New upgrades provide trigger rejection to reject low-p muons
 - Construction just completed for Run 12 (2012)
 - Commissioning still ongoing, ready for next 500GeV physics run
- Need 300pb⁻¹ to complete the W program
 - To provide a direct constraint on the sea contribution to the protons' spin